Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Radiat Oncol ; 6(1): 100610, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33490733

RESUMO

PURPOSE: This study aimed to investigate intra- and interfraction motion during liver stereotactic body radiation therapy for the purpose of planning target volume (PTV) margin estimation, comparing deep inspiration breath hold (DIBH) and deep expiration breath hold (DEBH). METHODS AND MATERIALS: Pre- and posttreatment kV cone beam computed tomography (CT) images were acquired for patients with liver cancer who were treated using stereotactic body radiation therapy with DIBH or DEBH. A total of 188 images were analyzed from 18 patients. Positioning errors were determined based on a comparison with planning CT images and matching to the liver. Treatment did not proceed until errors were ≤3 mm. Standard deviations of random and systematic errors resulting from this image matching process were used to calculate PTV margin estimates. RESULTS: DIBH errors are generally larger than DEBH errors, especially in the anterior-posterior and superior-inferior directions. Posttreatment errors tend to be larger than pretreatment errors, especially for DIBH. Standard deviations of random errors are larger than those of systematic errors. Considering both pre- and posttreatment cone beam CT images, PTV margins for DIBH and DEBH are estimated as anterior-posterior, superior-inferior, right-left = (5.7, 6.3, 3.0) mm and (3.1, 3.4, 2.8) mm, respectively. CONCLUSIONS: This study suggests that DEBH results in more reproducible target positioning, which could in turn justify the use of smaller PTV margins.

2.
Cureus ; 12(2): e6900, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32064218

RESUMO

Total body irradiation (TBI) is used prior to bone marrow transplantation as part of the conditioning regimen in selected patients. A linear accelerator-based technique was used at our treatment centre between June, 2004 and August, 2015. Patients were treated supine with extended source-to-surface distance (SSD) lateral fields, and prescription dose was 12 Gy delivered in six fractions, two fractions per day. Dose was prescribed to midplane at the level of the umbilicus and monitor units were calculated manually based on measured beam data. Dose variation within 10% of the prescribed midplane dose is considered acceptable for TBI treatment. This was achieved in our clinic by using compensators to account for missing tissue in the head and neck and lower leg regions. Lung attenuators were routinely used to correct for internal inhomogeneity, which resulted from low density lung tissue. The purpose of this study was to determine whether dose variation was within acceptable limits for these patients as part of a quality assurance process. Following chart review, 129 patients who received six-fraction TBI from 2004 to 2015 were included in this study. Patients receiving single fraction treatment were excluded. Metal oxide semiconductor field effect transistors (MOSFET) dosimetry was used to measure surface dose at four or five locations during patients' first fraction of TBI. Dosimetry was repeated during the second fraction for any site with variation greater than 10%. Statistical analysis was carried out on patient data, diagnosis and dosimetry measurements. Of the 129 patients who met the inclusion criteria, 50 were diagnosed with acute myelogenous leukemia, 30 with acute lymphoblastic leukemia and 11 with chronic myelogenous leukemia. The rest of the patients were diagnosed with lymphoma or myelodysplastic syndromes. The mean percent variation in dosimetry measurements taken at the specific locations ranged between 3.5% and 8.3%. The highest variation was found in measurements performed on the cheek. A high percentage of all dosimetry readings (85.5%) was within the acceptable range of +10% from the expected value. The highest number of individual readings taken at a specific location that fell outside this range were found at the cheek. We conclude that the linear accelerator delivered TBI at our centre meets the acceptable limits of dose variation over an 11-year period.

3.
Med Dosim ; 42(2): 150-155, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28495033

RESUMO

Three-dimensional (3D) printing is suitable for the fabrication of complex radiotherapy bolus. Although investigated from dosimetric and feasibility standpoints, there are few reports to date of its use for actual patient treatment. This study illustrates the versatile applications of 3D printing in clinical radiation oncology through a selection of patient cases, namely, to create bolus for photon and modulated electron radiotherapy (MERT), as well as applicators for surface high-dose rate (HDR) brachytherapy. Photon boluses were 3D-printed to treat a recurrent squamous cell carcinoma (SCC) of the nasal septum and a basal cell carcinoma (BCC) of the posterior pinna. For a patient with a mycosis fungoides involving the upper face, a 3D-printed MERT bolus was used. To treat an SCC of the nose, a 3D-printed applicator for surface brachytherapy was made. The structures' fit to the anatomy and the radiotherapy treatment plans were assessed. Based on the treatment planning computed tomography (CT), the size of the largest air gap at the interface of the 3D-printed structure was 3 mm for the SCC of the nasal septum, 3 mm for the BCC of the pinna, 2 mm for the mycosis fungoides of the face, and 2 mm for the SCC of the nose. Acceptable treatment plans were obtained for the SCC of the nasal septum (95% isodose to 99.8% of planning target volume [PTV]), the BCC of the pinna (95% isodose to 97.7% of PTV), and the mycosis fungoides of the face (90% isodose to 92.5% of PTV). For the latter, compared with a plan with a uniform thickness bolus, the one featuring the MERT bolus achieved relative sparing of all the organs at risk (OARs) distal to the target volume, while maintaining similar target volume coverage. The surface brachytherapy plan for the SCC of the nose had adequate coverage (95% isodose to 95.6% of clinical target volume [CTV]), but a relatively high dose to the left eye, owing to its proximity to the tumor. 3D printing can be implemented effectively in the clinical setting to create highly conformal bolus for photon and MERT, as well as applicators for surface brachytherapy.


Assuntos
Materiais Biomiméticos , Braquiterapia/instrumentação , Neoplasias/radioterapia , Impressão Tridimensional , Proteção Radiológica/instrumentação , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Desenho de Equipamento , Feminino , Humanos , Masculino , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
4.
Med Phys ; 43(1): 436, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26745936

RESUMO

PURPOSE: Previous studies have introduced gold nanoparticles as vascular-disrupting agents during radiation therapy. Crucial to this concept is the low energy photon content of the therapy radiation beam. The authors introduce a new mode of delivery including a linear accelerator target that can toggle between low Z and high Z targets during beam delivery. In this study, the authors examine the potential increase in tumor blood vessel endothelial cell radiation dose enhancement with the low Z target. METHODS: The authors use Monte Carlo methods to simulate delivery of three different clinical photon beams: (1) a 6 MV standard (Cu/W) beam, (2) a 6 MV flattening filter free (Cu/W), and (3) a 6 MV (carbon) beam. The photon energy spectra for each scenario are generated for depths in tissue-equivalent material: 2, 10, and 20 cm. The endothelial dose enhancement for each target and depth is calculated using a previously published analytic method. RESULTS: It is found that the carbon target increases the proportion of low energy (<150 keV) photons at 10 cm depth to 28% from 8% for the 6 MV standard (Cu/W) beam. This nearly quadrupling of the low energy photon content incident on a gold nanoparticle results in 7.7 times the endothelial dose enhancement as a 6 MV standard (Cu/W) beam at this depth. Increased surface dose from the low Z target can be mitigated by well-spaced beam arrangements. CONCLUSIONS: By using the fast-switching target, one can modulate the photon beam during delivery, producing a customized photon energy spectrum for each specific situation.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/efeitos da radiação , Ouro/química , Ouro/farmacologia , Nanopartículas Metálicas , Doses de Radiação , Radioterapia Assistida por Computador/métodos , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Fótons/uso terapêutico , Dosagem Radioterapêutica , Radioterapia Assistida por Computador/instrumentação
5.
Med Dosim ; 37(3): 250-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22189031

RESUMO

The two-dimensional (2D) ionization chamber array MatriXX Evolution is one of the 2D ionization chamber arrays developed by IBA Dosimetry (IBA Dosimetry, Germany) for megavoltage real-time absolute 2D dosimetry and verification of intensity-modulated radiation therapy (IMRT). The purpose of this study was to (1) evaluate the performance of ion chamber array for submegavoltage range brachytherapy beam dose verification and quality assurance (QA) and (2) use the end-to-end dosimetric evaluation that mimics a patient treatment procedure and confirm the primary source strength calibration agrees in both the treatment planning system (TPS) and treatment delivery console computers. The dose linearity and energy dependence of the 2D ion chamber array was studied using kilovoltage X-ray beams (100, 180 and 300 kVp). The detector calibration factor was determined using 300 kVp X-ray beams so that we can use the same calibration factor for dosimetric verification of high-dose-rate (HDR) brachytherapy. The phantom used for this measurement consists of multiple catheters, the IBA MatriXX detector, and water-equivalent slab of RW3 to provide full scattering conditions. The treatment planning system (TPS) (Oncentra brachy version 3.3, Nucletron BV, Veenendaal, the Netherlands) dose distribution was calculated on the computed tomography (CT) scan of this phantom. The measured and TPS calculated distributions were compared in IBA Dosimetry OmniPro-I'mRT software. The quality of agreement was quantified by the gamma (γ) index (with 3% delta dose and distance criterion of 2 mm) for 9 sets of plans. Using a dedicated phantom capable of receiving 5 brachytherapy intralumenal catheters a QA procedure was developed for end-to-end dosimetric evaluation for routine QA checks. The 2D ion chamber array dose dependence was found to be linear for 100-300 kVp and the detector response (k(user)) showed strong energy dependence for 100-300 kVp energy range. For the Ir-192 brachytherapy HDR source, dosimetric evaluation k(user) factor determined by photon beam of energy of 300 kVp was used. The maximum mean difference between ion chamber array measured and TPS calculated was 3.7%. Comparisons of dose distribution for different test plans have shown agreement with >94.5% for γ ≤1. Dosimetric QA can be performed with the 2D ion chamber array to confirm primary source strength calibration is properly updated in both the TPS and treatment delivery console computers. The MatriXX Evolution ionization chamber array has been found to be reliable for measurement of both absolute dose and relative dose distributions for the Ir-192 brachytherapy HDR source.


Assuntos
Braquiterapia/instrumentação , Braquiterapia/normas , Garantia da Qualidade dos Cuidados de Saúde , Radiometria/instrumentação , Radiometria/normas , Calibragem , Canadá , Análise de Falha de Equipamento/instrumentação , Análise de Falha de Equipamento/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Int J Radiat Oncol Biol Phys ; 68(4): 1121-30, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17398025

RESUMO

PURPOSE: The accuracy of intensity-modulated radiotherapy (IMRT) delivery may be compromised by random spatial error and systematic anatomic changes during the treatment course. We present quantitative measurements of the spatial variability of head-and-neck organs-at-risk and demonstrate the resultant dosimetric effects. METHODS AND MATERIALS: Fifteen consecutive patients were imaged weekly using computed tomography during the treatment course. Three-dimensional displacements were calculated for the superior and inferior brainstem; C1, C6, and T2 spinal cord; as well as the lateral and medial aspects of the parotid glands. The data were analyzed to show distributions of spatial error and to track temporal changes. The treatment plan was recalculated on all computed tomography sets, and the dosimetric error was quantified in terms of the maximal dose difference (brainstem and spinal cord) or the mean dose difference and the volume receiving 26 Gy (parotid glands). RESULTS: The mean three-dimensional displacement was 2.9 mm for the superior brainstem, 3.4 mm for the inferior brainstem, 3.5 mm for the C1 spine, 5.6 mm for the C6 spine and 6.0 mm for the T2 spine. The lateral aspects of both parotid glands showed a medial translation of 0.85 mm/wk, and glands shrank by 4.9%/wk. The variability of the maximal dose difference was described by standard deviations ranging from 5.6% (upper cord) to 8.0% (lower cord.) The translation of the left parotid resulted in an increase of the mean dose and the volume receiving 26 Gy. CONCLUSION: Random spatial and dosimetric variability is predominant for the brainstem and spinal cord and increases at more inferior locations. In contrast, the parotid glands demonstrated a systematic medial translation during the treatment course and thus sparing may be compromised.


Assuntos
Tronco Encefálico , Neoplasias de Cabeça e Pescoço/radioterapia , Glândula Parótida , Radioterapia de Intensidade Modulada , Medula Espinal , Idoso , Tronco Encefálico/diagnóstico por imagem , Feminino , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Movimento , Glândula Parótida/diagnóstico por imagem , Dosagem Radioterapêutica , Medula Espinal/diagnóstico por imagem , Tomografia Computadorizada por Raios X
7.
J Appl Clin Med Phys ; 6(1): 61-70, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15770197

RESUMO

For patients with thoracic and abdominal lesions, respiration-induced internal organ motion and deformations during radiation therapy are limiting factors for the administration of high radiation dose. To increase the dose to the tumor and to reduce margins, tumor movement during treatment must be minimized. Currently, several types of breath-synchronized systems are in use. These systems include respiratory gating, deep inspiration breath-hold, active breathing control, and voluntary breath-hold. We used a linear position transducer (LPT) to monitor changes in a patient's abdominal cross-sectional area. The LPT tracks changes in body circumference during the respiratory cycle using a strap connected to the LPT and wrapped around the patient's torso. The LPT signal is monitored by a computer that provides a real-time plot of the patient's breathing pattern. In our technique, we use a CT study with multiple gated acquisitions. The Philips Medical Systems Q series CT imaging system is capable of operating in conjunction with a contrast injector. This allows a patient performing the deep inspiration breath-hold maneuver to send a signal to trigger the CT scanner acquisitions. The LPT system, when interfaced to a LINAC, allows treatment to be delivered only during deep inspiration breath-hold periods. Treatment stops automatically if the lung volume drops from a preset value. The whole treatment can be accomplished with 1 to 3 breath-holds. This technique has been used successfully to combine automatically gated radiation delivery with the deep inspiration breath-hold technique. This improves the accuracy of treatment for moving tumors, providing better target coverage, sparing more healthy tissue, and saving machine time.


Assuntos
Imobilização/instrumentação , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Movimento , Intensificação de Imagem Radiográfica/instrumentação , Mecânica Respiratória , Transdutores , Humanos , Imobilização/métodos , Inalação , Intensificação de Imagem Radiográfica/métodos , Radioterapia Conformacional/instrumentação , Radioterapia Conformacional/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espirometria/instrumentação , Espirometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...